卡尔·弗里德里希·高斯系列介绍二----学术贡献

卡尔·弗里德里希·高斯系列介绍二----学术贡献

卡尔·弗里德里希·高斯Johann Carl Friedrich Gauss
德国著名数学家、物理学家、天文学家、大地测量学家。和阿基米德、牛顿、欧拉同享盛誉,是近代数学奠基者之一,他所研究的内容涉及数学的各个领域,是历史上最伟大的数学家之一,被誉为数学王子。18岁时发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的肖像已经被印在从1989年至2001年流通的10元面值德国马克的纸币上。
 

学术贡献

        高斯是贫穷父母唯一的儿子。鉴於他在数学和语言中表现出的才能,他的教师们和慈母把他推荐给伯伦瑞克公爵。公爵资助他上完中学并从1795~1798年在格丁根大学学数学。1799年获黑尔姆施泰特大学的博士学位。学位论文的题目是代数基本定理的一个证明,而在他之前的证明都是不完全的。该定理说︰每个复系数的代数方程必有复数解。高斯非常巧妙地陈述和证明了这个定理,而没有用到复数。24岁时发表了《算术研究》,这是数学史上最出色的成果之一。书中系统而广泛地阐述了数论——论述整数(…-2,-1,0,1,2,…)的性质与关系——中有影响的概念和方法。他认为这些概念和方法在数学中有著头等重要的意义,他对同馀数理论作了大量研究。同余数是那些被另一个数相除而有相同余数的数,例如7和9以数2为模是同馀的,因为它们被2除时余数都是1.高斯还第一个证明了同二次剩馀有关的二次互反律。(a称为关於b的二次剩馀,如果存在一个整数x,使得a被b除与x2被b除有相同的馀数)。高斯还把这个定律应用於一些特殊情形的方程组,在方程组中他能把代数、算术和几何的思想结合起来。例如,他利用数论对正n边形作图的几何问题提出了代数解法。欧几里得已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关於这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。
这些关於数论的工作对代数数的现代算术理论即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。在《算术研究》中,高斯毫不犹豫地使用了那些a、b为实数的复整数a+b,1831年(发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。
谷神星

  谷神星

1801年高斯有机会戏剧性地施展他的优势的计算技巧,并以此来表示对公爵资助他受教育的感谢。当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”。我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。高斯这时对这个问题产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法”。在天文学中这一成就立即得到公认。他在《天体运动理论》(1809)中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星「智神星」方面也获得类似的成功。考虑到其他行星对智神星轨道的摄动,高斯改进了他的计算。 这时他的声名远播,荣誉滚滚而来。
公爵继续慷慨资助高斯的研究,使得他能在1803年谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。1807年他成为格丁根大学的天文学教授和新天文台台长,直到逝世。1809年,在结婚4年后和第三个孩子刚出世不久,他第一个妻子去世。他的第二次婚姻(1810~1831)带给他两个儿子和一个女儿。
1820年前后,高斯把注意力转向大地测量——用数学方法测定地球表面的形状和大小。他把很多时间用於大地测量的理论研究和野外工作。为了增加测量的精确度,他发明了回光仪(一种利用日光以保证比较精确测量的仪器)。他还引进了所谓的高斯误差曲线,并指出概率如何能用变差的钟形曲线(一般称为正态曲线,它是刻画数据统计分布的基础)来表示。他还对透过实际的大地测量确定地球形状感兴趣,这个工作使他回到了纯理论。他利用这些测量数据发展了曲面论,按照这一理论,一个曲面的特徵只要透过测量曲面上曲线的长度就能确定。这种「内蕴曲面论」启发了他的学生黎曼发展三维或多维空间的一般内蕴几何学。这是黎曼1854年在格丁根就职演说的题目,据说也是困扰高斯的问题。大约60年以后黎曼的思想形成爱因斯坦广义相对论的数学基础。
空间弯曲——非欧几何的一种表现

  空间弯曲——非欧几何的一种表现

高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。不久就有人推测︰这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关於它的所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。他逐渐得出革命性的结论︰确实存在这样的几何学,其内部相容并且没有矛盾。但因为与同代人的观点相背,他不敢发表(参阅非欧几里得几何条)。
当1830年前后匈牙利的波尔约(Janos Bolyai)和俄国的罗巴切夫斯基独立地发表非欧几何学时,高斯宣称他大约在30年前就得到同样的结论。高斯也没有发表特殊复函数方面的工作,可能是因为没有能从更一般的原理导出它们。因此这一理论不得不在他死后数十年由其他数学家从他著作的计算中重建。
与他在引力和磁学方面的兴趣有密切关系的是他在1840年发表的实分析论文。这一论文成为现代位势理论的出发点。这可能是他所有的工作中唯一没有达到他本人高标准要求的一个。只有到20世纪初数学家在不同原理的基础上或藉助於寻求高斯结论是完全正确的成立条件,才有可能重新发展位势理论。
1830年前后,极值(极大和极小)原理在高斯的物理问题和数学研究中开始占有重要地位,例如流体保持静止的条件等问题。在探讨毛细作用时,他提出了一个数学公式能将流体系统中一切粒子的相互作用、引力以及流体粒子和与它接触的固体或流体粒子之间的相互作用都考虑在内。这一工作对於能量守恒原理的发展作出了贡献。从1830年起高斯就与物理学家威廉·爱德华·韦伯密切合作。由於对地磁学的共同兴趣,他们一起建立了一个世界性的系统观测网。他们在电磁学方面最重要的成果是电报的发展。因为他们的资金有限,所以试验都是小规模的。高斯相当害怕那种世界性的通信思想。
卡尔·弗里德里希·高斯

  卡尔·弗里德里希·高斯

高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对於数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。教学是他最讨厌的事,因此他只有少数几个学生。但他的那些影响数学发展进程的论著(大约155篇)却使他呕心沥血。有3个原则指导他的工作︰他最喜欢说的「少些,但要成熟些」;他的格言「不留下进一步要做的事」;和他的极度严格的要求。从他死后出版的著作中可以看出,他有许多重要和内容广泛的论文从未发表,因为按他的意见,它们都不符合这些原则。高斯所追求的数学研究题目都是那些他能在其中预见到具有某种有意义联系的概念和结果,它们由於优美和普遍而值得称道。
1849年举办了高斯获博士学位50周年庆祝会,为此高斯准备了他早期对代数基本定理证明的一个新版本。由於健康状况愈来愈差,这成了他最后的著作。给他带来最大欢乐和荣誉的还是格丁根市赠与他的荣誉公民头衔。由於他在数学、天文学、大地测量学和物理学中的杰出研究成就,他被选为许多科学院和学术团体的成员。他谢绝了许多大学请他当教授的邀请而一直留在格丁根大学的院系中,直至直至1855年2月23日逝世。逝世后不久就铸造了纪念他的钱币。「数学之王」的称号是对他恰如其分的称颂。

返回首页


Copyright 2010-2011 金磁科技-上海天端实业有限公司 TINDUN INDUSTRY (Shanghai) CO.,LTD All Rights Reserved.
地址:上海市嘉定区德富路1198号太湖世家1601-1602室  邮编(P.C):201821
Add: R1601-1602,TaiHu Shijia Building,No.1198,DeFu Road,Jiading District Shanghai,201801,China
电话/Tel:0086-21-5187-3517  传真/Fax:0086-21-333-21281沪ICP备09006617号-3
主营产品:高斯计 磁通计 铁损磁感测量仪 充磁机|充磁电源 退磁机|退磁线圈 多极磁环磁分布测试仪 磁偏角测试系统 亥姆霍兹线圈磁场